skip to main content


Search for: All records

Creators/Authors contains: "McCord, Rachel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Rising Engineering Education Faculty Experience program (REEFE) is a professional development program that connects graduate students in engineering education with faculty members at teaching-focused institutions. The program goal is to simultaneously support faculty growth in engineering education and graduate student growth as academic change agents. Our program has transitioned from a partnership between one engineering education graduate program and one engineering institution to a consortium of engineering education graduate programs that sends students to multiple institutions across the country. The REEFE Consortium also developed a unique partnership with the Making Academic Change Happen initiative to offer continuous training to graduate students during their REEFE experience. Many positive outcomes have come from the development of the REEFE Consortium, including better graduate training in research at the coordinating institution, a better understanding of program logistics, and new and strengthened professional relationships. We discovered a number of challenges associated with providing intensive professional development opportunities to graduate students, including timing of experiences relative to degree progress, loss of connection to the home research community, and financial impact, especially as it relates to travel and housing. While a search of existing literature in professional development in higher education has provided best practices for existing programs, there is little to no available research highlighting barriers that exist to offering different types of professional development opportunities to graduate student populations. These barriers are important to highlight as they provide critical information needed in the design and decision making for those seeking to create useful professional development opportunities for graduate populations. This paper provides an updated description of the Rising Engineering Education Faculty Experience program as we attempt to scale the program. We summarize the existing literature on barriers to participation in professional development opportunities for graduate students. Finally, we describe how REEFE both addresses and fails to address these barriers. 
    more » « less
  2. Abstract Background

    The use of metacognition is critical to learning, especially in fields such as engineering that involve problem‐solving and difficult conceptual material. Due to limitations with current methodological approaches, new methods are needed to investigate engineering students' metacognitive engagement in learning situations that are self‐directed, such as study groups.

    Purpose

    Our purpose was to develop an approach to investigate the metacognitive engagement of undergraduate engineering students in self‐directed learning environments. The Naturalistic Observations of Metacognition in Engineering (NOME) Observational Protocol and Coding Strategy is a qualitative data collection method that allows researchers to observe the behaviors of students who are studying in groups to determine the student's engagement in different metacognitive practices. The NOME is intended to be used by researchers interested in studying online metacognitive behaviors without the direct interference of a methodological approach.

    Design/Method

    We observed three study groups where students were working on an engineering problem‐solving homework assignment. Using a taxonomic definition of metacognition, we coded episodes of observation transcripts to identify behaviors that represented key definitions in the taxonomy.

    Results

    We combined subcodes and descriptions of behaviors with key definitions to develop a coding strategy useful for future observational studies. Evidence of intercoder agreement and agreement in unitizing indicates that the coding strategy can reliably be used by multiple trained coders to identify metacognitive engagement.

    Conclusions

    The reliability evidence shows that the NOME may be a useful tool for researchers in engineering education interested in studying the metacognitive habits of engineering students in self‐directed study.

     
    more » « less
  3. In this theoretical paper, we highlight the scholarship of integration by exploring how customer discovery connects to other methodologies in engineering education research and the opportunities for using this methodology in engineering education research. As a result of the National Science Foundation’s Innovation Corps (I-Corps) and I-Corps for Learning initiatives, the Lean LaunchPad®/Customer Discovery methodology has grown in popularity within academic institutions, particularly in business and entrepreneurship education. In addition, the Lean LaunchPad®/Customer Discovery approach has helped startups, individuals, academics, and students test the potential of an idea, make important decisions about the structure, value, and implementation of their projects, and develop a minimum viable product, service, or offering. While the Lean LaunchPad®/Customer Discovery approach is relatively new to the fields of business, engineering education, and entrepreneurship education, its methodological background emerges from well-established qualitative research techniques. We first describe the Lean LaunchPad®/Customer Discovery process and give examples of its current use in academia. Next, we explain the connections between the Lean LaunchPad®/Customer Discovery approach and specific forms of qualitative research like design-based research, action research, and qualitative interviewing. Finally, we offer a detailed example of how our team used the Lean LaunchPad®/Customer Discovery approach to conduct an engineering education action research project. This example serves to clarify how the Lean LaunchPad®/Customer Discovery approach can be successfully applied, validated by funding received after our use of the process to develop a program. We expect that this theoretical work will add value to individuals interested in conducting action-oriented educational research projects for two reasons. First, we show how robust qualitative research methodologies provide the foundation for a popular market research approach. Second, we give an example of using this approach in an educational context. Our motivation is to expand the breadth of methodologies available to researchers and practitioners. 
    more » « less